

A610G

APPLICATIONS

AMITSUBISHI MATERIALS CORPORATION

INDEX AEROSPACE

AIR FRAME

High efficiency machining of laminated board (CFRP, CFRP/AI) is achieved by using the MCS drill and S-TAW drills with CVD diamond coating. Burrs and delamination are decreased.

4

Page

Drilling

High efficiency machining of laminated board (CFRP, CFRP/Ti) is achieved by using PCD drills (sintered diamond). Burrs and delamination are decreased.

Trimming

High-quality machining is achieved by using DFC end mills with CVD diamond coating. Burrs and delamination are decreased.

Aluminium Alloy

High efficiency is achieved by using the AXD series. Metal removal of up to 10000cm³/min. is achieved.

Face Milling, Pocket Milling

High efficiency machining is achieved by using ALIMASTER end mills. Metal removal up to 5000cm³/min. is achieved.

Side Milling, Pocket Milling

Stable machining is achieved by using the Coolstar series. Adhesion resistance and chip removal are excellent.

Coolstar Series

ALIMASTER

Page

12

Copy Turning

Extended tool life achieved by using GY series with a sharp geometry breaker for low feed rates.

GY Series

FJ/MS/GJ US905/VP05RT/VP10RT

MMS prill

ARX

FJ/M5/GJ 819010

External and Internal Turning

Tool-life extended 1.5 times by using US905 grade on Ni-based alloy.

Drilling

Extended tool life by using MMS with TRI-Cooling technology.

Helical Cutting, Profile Milling High efficiency machining is achieved by using an

ARX type cutter.

Titanium Alloy

External and Internal Turning The first recommendation is a non-coated grade

when finish machining titanium alloys.

Maraging Steel

External and Internal Turning Success achieved by using VP05RT when rough

machining maraging steel.

LANDING GEAR

Rough Milling

Stable high efficiency machining with the VFX cutter. VFX provides high rigidity and low cutting resistance.

Finish Profile Milling

Vibration is prevented by using the vibration control end mills, additionally an excellent workpiece surface finish is achieved.

Rough Pocket Milling

Long tool life machining is achieved by using APX series that features a synergy effect of insert grade and the low cutting-resistance edge.

(TOOLS NEWS B184G)

5-TAW Drill (Special insert)

Key Point on Machining

• Tool life is extremely short because carbon fibre has high strength and when drilling composite materials, burrs and delamination are easily generated. It is effective to use a tool that has a high wear resistance coating. The MCS drill and S-TAW drills (special order) decrease burrs and delamination due to the CVD diamond coating and their optimized geometry. Long tool life and high-quality drilling became possible.

Application Example

• CVD diamond coated drills with optimized cutting geometry for composite materials reduce burr formation and delamination.

Drill	ø 6.375
Cutting Speed	vc100 m/min (4995 min ⁻¹)
Feed	f0.04 mm/rev
Machine	Vertical type M/C
Coolant	Internal air blow

(Special)

Key Point on Machining

 Tool life is extremely short because carbon fibre has high strength and when drilling composite materials, burrs and delamination are easily generated. It is effective to use a tool that has PCD (sintered diamond) with high wear resistance. A PCD drill (special order) with optimized geometry and PCD coating (sintered diamond) decreases burrs and delamination. Long tool life and high-quality drilling became possible.

Application Example

• PCD drills with optimized cutting geometry for composite materials reduces burr formation and delamination.

Drill	ø 6.375
Work Material	CFRP + Titanium alloy (Ti-6AI-4V)
Cutting Speed	vc10 m/min (500 min ⁻¹)
Feed	f0.05 mm/rev
Machine	Vertical type M/C
Coolant	Internal mist

Titanium alloy

Good edge condition (120 hole machined)

Work Materials [CFRP]

(TOOLS NEWS B189G)

Key Point on Machining

 Tool life is extremely short because carbon fibre has high strength and when drilling composite materials, burrs and delamination are easily generated. It is effective to use a tool that has high wear resistance coating. DFC end mills decrease the burrs and the delamination due their CVD diamond coating and optimized cutting geometry.

Long tool life, high-quality milling became possible.

Application Example

• CVD diamond coated end mills with optimized cutting geometry for composite materials reduce burr formation and delamination.

End mill	DFC4JCD1000 (Ø 10)
Work Material	CFRP
Revolution	n6000 min ^{_1} (vc188 m/min)
Feed	vf750 mm/min (fz0.03 mm/tooth)
Depth of Cut	ap5 mm
Coolant	Air blow

Work Materials [Aluminium Alloy]

Face Milling, Pocket Milling

AXD Series (TOOLS NEWS B116G)

Key Point on Machining

 When milling rib type components where stock material removal is over 90%, high speed and high efficiency machining is necessary to reduce costs. The AXD series achieves low cutting resistance without lowering the insert edge strength due to a helical flank and optimized of the relief angle. Additionally, the convex cutting edge allowed good chip removal, resulting in high speed, high efficiency machining.

Application Example

 Chip removal 10000cm³/min. is achieved by the super-high efficiency machining of the AXD7000-HSK type.

Holder	AXD7000R05003A-H63A	
Insert (Grade)	XDGX227030PDFR-GL (TF15)	
Work Material	A7075	
Cutting Speed	vc2830 m/min (n18000 min ⁻¹)	
Feed	fz0.21 mm/tooth (vf11340 mm/min)	
Depth of Cut	ap18 mm, ae50 mm	
Coolant	Emulsion	

Avoids poor wall surface finishes because the tool is designed to Interpolate corners of the pocket, thereby also preventing vibration.

*Overseas major aerospace manufacturers using 50 pieces or more.

Work Materials [Aluminium Alloy]

Key Point on Machining

 When milling rib type components where stock material removal is over 90%, high speed and high efficiency machining is necessary to reduce costs. The ALIMASTER series achieves good chip removal due to the unique crosssectional shape of the flute geometry shape. This enabled high speed, high efficiency machining.

Application Example

• Chip removal 5000cm³/min. is achieved when using the high power main machine axis at high-speeds.

End mill	CSRARBD2500R300 (ø 25/R3)
Work Material	A7075
Cutting Speed	vc1178 m/min (n15000 min ⁻¹)
Feed	fz0.22 mm/tooth (vf10000 mm/min)
Depth of Cut	ap25 mm, ae20 mm
Coolant	Emulsion

Avoids poor wall surface finishes because the tool is designed to Interpolate corners of the pocket, thereby also preventing vibration.

<Machine specification> 15000min⁻¹/75kW, BT50

Work Materials [Titanium Alloy]

Key Point on Machining

 When milling titanium alloys adhesion is easily generated, thermal conductivity is low and heat concentrates on the cutting edge, it is important to remove heat at the cutting edge efficiently and also to evacuate chips smoothly. The Coolstar series achieves optimum cooling effect and chip removal due to the multi coolant holes and unique flute shape. Stable machining became possible for difficult-to-cut material applications.

Application Example

• No adhesion due excellent cooling effect of the multi coolant holes.

End mill	VF6MHVCHD1600 (ø 16)
Work Material	Ti-6AI-4V
Cutting Speed	vc150 m/min (n3000 min ⁻¹)
Feed	fz0.1 mm/tooth (vf1800 mm/min)
Depth of Cut	ap24 mm, ae1.6 mm (Trochoid)
Coolant	Emulsion (0.7 MPa)

GY Series (TOOLS NEWS B140G)

Key Point on Machining

• Ni-based alloy machining requires a sharp edge geometry. An increase in tool life can be achieved by using GS breaker that is designed to decrease the cutting resistance.

Application Example

 Stable machining is possible on super heatresistant alloys.

Holder	GYHL2525M00-M25L
Insert (Grade)	GY2M0600J040N-GS (VP10RT)
Work Material	Waspaloy
Cutting Speed	vc35 m/min
Feed	f0.05 mm/rev
Depth of Cut	ap10 mm
Coolant	Emulsion

Carbide substrate (HRA92.0)

VB: 0.122mmVP1ORTFurther use is possible because of small wear. (after 25 min. machining)

Key Point on Machining

• US905 grade for finish-machining of Ni-based alloys. Can be used at higherspeeds when machining Ni-based alloys than VP05RT and VP10RT with PVD coating that are usually used at 50m/min. machining speeds or less.

Application Example

• Possible to use for high speed finish machining of super heat resistant alloys.

Holder	DCLNL3225P32	
Insert (Grade)	CNMG120408-MS (US905)	
Work Material	Inconel [®] 718	
Cutting Speed	vc80 m/min	
Feed	f0.15 mm/rev	Concession of the local division of the loca
Depth of Cut	ap0.25 mm	and the second sec
Coolant	Emulsion	MS Breaker

"TRI-Cooling Technology"

Key Point on Machining

Drilling

• When drilling Ni-based alloys, a major factor is how to cool the cutting edge. It is possible to extend tool life greatly by using a solid carbide drill that uses TRI-Cooling through coolant technology together with a high-pressure coolant supply.

Application Example

• 15 times tool life is achieved when using highpressure internal coolant and TRI-cooling technology.

Drill (Grade)	MMS0610X3D (DP7020)
Work Material	Inconel [®] 718
Cutting Speed	vc14 m/min
Feed	f0.06 mm/rev
Hole Depth	15 mm
Coolant	Emulsion

Key Point on Machining

• For machining of holes on the outer side of the engine cases, helical machining with a small diameter radius insert end mill is effective. Additionally it delivers an excellent machining performance when profile machining on the outer faces.

Application Example

 Large hole machining of super heat-resistant alloys is achieved by helical machining with a small diameter, indexable insert, radius end mill.

Holder	ARX35R142SA12S
Insert (Grade)	RDMW0724M0E (VP15TF)
Work Material	Inconel [®] 718
Cutting Speed	vc30 m/min
Feed	f0.2 mm/rev (Helical Cutting)
Hole Depth	20 mm (1 mm/rev), Hole dia. 25 mm
Coolant	Emulsion

Helical Cutting

Setting a tool's centre excursion

ødc = øDH excursion diameter

øD1 Tool's center Required bore Tool's cutting diameter

Work Materials [Titanium Alloy]

Key Point on Machining

• Rough estimate of the tool life is 120 minutes at 80m/min, 60 minutes at 120m/ min, when finish-machining titanium-alloy. Non-coated grades are the first recommendation.

Application Example

Over 3 times tool life is achieved by setting appropriate cutting conditions.

Holder		H63T-DCLNR-DX12						4
Insert (Grade)		CNGG120408-FJ (RT9010)						
Work Material		Ti-6Al-4	١V					
Cutting Speed		vc80, 1	20 m/min					
Feed		f0.15mr	n/rev					1995
Depth of Cut		ap0.25	mm					P
Coolant		Emulsi	on					
			Тос	ol life (ı	min)		F	J Breaker
	0 30	60	90	120	150	180	210	
Cutting Speed vc80 m/min								
							_	
Cutting Speed vc120 m/min			Ov	er 3 ti	mes			

Work Materials [Maraging Steel]

Key Point on Machining

• When rough machining engine shafts made from maraging steel, the use of grades for hard materials such as VP05RT through to the use of the CBN is recommended.

Application Example

• 2 times tool life is achieved by using VP05RT.

Holder	PSC63-DDJNR	_
Insert (Grade)	DNMG150412-MS (VP05RT)	
Work Material	Maraging Steel (48-50HRC)	
Cutting Speed	vc90 m/min	
Feed	f0.23 mm/rev	
Depth of Cut	ap2 mm	
Coolant	Emulsion	
0	Tool life (min)	MS Breaker
VP05RT		
Conventional	2 times	

Work Materials [Titanium Alloy]

VFX6 (TOOLS NEWS B182G)

Key Point on Machining

• When rough machining titanium alloy, chipping and abnormal damage of the cutting edge easily occurs if low rigidity tools are used. Using high rigidity tools and low cutting resistance inserts is recommended. Stable machining is possible because the VFX series is a high rigidity design and cutting resistance is lower due to the convex curve cutting edge and the V-formation of the clamping face.

Application Example

• Over 7 times tool life is achieved in combination with high-pressure internal coolant.

Holder	VFX6-080A05A075R	
Insert (Grade)	XNMU190912R-MS (MP9030)	
Work Material	Ti-5AI-5Mo-5V-3Cr	
Cutting Speed	vc40 m/min (n160 min ⁻¹)	
Feed	fz0.1 mm/tooth (vf80 mm/min)	
Depth of Cut	ap65 mm, ae5 mm	
Coolant	Emulsion (8 MPa)	

Work Materials [Titanium Alloy]

Key Point on Machining

 When profile machining titanium alloy, chipping and abnormal damage of the cutting edge can occur and vibration is easily generated.
Use of a tool which is designed for vibration control is effective.
The latest vibration control series end mills have variable pitch geometry with newly designed radius-cutting-edges that reduce vibration.

Application Example

• 3 times tool life and stable machining is achieved when no vibration occurs.

End mill	VF4SVBR1000	
Work Material	Ti-10V-2Fe-3AI	
Cutting Speed	vc200 m/min (n3400 min ⁻¹)	
Feed	vf1020 mm/min	
Depth of Cut	ap1.0 mm, ae0.5 mm	
Coolant	Emulsion	

Special: increased number of teeth

Key Point on Machining

- When finish machining titanium alloy, chipping and abnormal damage of the cutting edge can occur and vibration is easily generated.
 Use of a tool which is designed for vibration control is effective.
- The latest vibration control series end mills promote stable machining with variable pitch geometry and irregular helix flutes for improved chip disposal and reduced vibration.

Application Example

• 7 times tool life and stable machining is achieved when no vibration occurs.

End mill	VF6MHVR	1600 (ø 16)		
Work Material	Ti-6Al-4V	ae 0.8mm		
Cutting Speed	vc150 m/n	nin (n3000 min ⁻¹)		
Feed	fz0.075 mi	n/tooth (vf1350 n	an 16mm	
Depth of Cut	ap16 mm,	ap16 mm, ae0.8 mm		
Coolant	Emulsion		4	
	Το	ol life (min)		
0	30	60	90	
VF6MHV				No vibration

Chatter mark

7 times

Work Materials [Titanium Alloy]

Rough Pocket Milling

Key Point on Machining

- When rough machining titanium alloy, chipping and abnormal damage of the cutting edge can and vibration is easily generated.
- The APX series offers stability with low cutting resistance inserts that have unique a convex curve shaped cutting edged and a high rigidity cutter body with internal coolant holes.

Application Example

• Long tool life is achieved even on long reach applications by combining a screw-in head and carbide shank.

Holder (Screw-in type)	APX3000R254M12A35 SC25M12S125SW	A
Insert (Grade)	AOMT123620PEER-M (VP20RT)	
Work Material	Ti-6Al-4V	Depth 80mm
Cutting Speed	vc40 m/min (n510 min ⁻¹)	
Feed	fz0.08 mm/tooth (vf160 mm/min)	
Depth of Cut	ap6 mm, ae25 mm	
Coolant	Emulsion	

Edge condition (85min.)

Global Network

- Sales Office
- Factory
- **O** Representative Office
- Agency

MITSUBISHI AMITSUBISHI MATERIALS

JAPAN

MITSUBISHI MATERIALS CORPORATION

Area Marketing & Operations Department KFC bldg., 8F, 1-6-1, Yokoami, Sumida-ku, Tokyo 130-0015 JAPAN TEL +81-3-5819-8771 FAX +81-3-5819-8774

USA

MITSUBISHI MATERIALS U.S.A. CORPORATION

11250 Slater Avenue, Fountain Valley, California, 92708, USA TEL. +1-714-352-6100 FAX +1-714-668-1320

MEXICO

MMC METAL DE MEXICO, S.A. DE C.V. Av. La Cañada No.16, Parque Industrial Bernardo Quintana, El Marques, Queretaro, CP76246 MEXICO TEL +52-442-221-6136 FAX +52-442-221-6134

BRAZIL

MMC-METAL DO BRASIL LTDA. Rua Cincinato Braga, 340, 13° Andar,

Bela Vista-CEP 01333-010, São Paulo-SP, BRAZIL TEL +55-11-3506-5600 FAX +55-11-3506-5688

CHINA

MITSUBISHI MATERIALS (SHANGHAI) CORPORATION Room 4107, UNITED PLAZA 1468, Nanjing Road West, Shanghai, 200040 CHINA TEL +86-21-6289-0022 FAX +86-21-6279-1180

THAILAND

MMC Hardmetal (Thailand) CO., Ltd. CTI Tower 24FI., 191/32 Rachadapisek Road, Klongtoey, Klongtoey, Bangkok 10110 THAILAND TEL +66-2661-8170 FAX +66-2661-8175

INDIA

MMC HARDMETAL INDIA PVT. LTD.

2/10, 1st Floor, 80 Feet Road, R.M.V 2nd Stage, Bangalore - 560 094 Karnataka INDIA TEL +91-80-2351-6083 FAX +91-80-2351-6080

GERMANY MMC HARTMETALL GmbH

Comeniusstr.2, 40670, Meerbusch, GERMANY TEL +49-2159-91890 FAX +49-2159-918966

UNITED KINGDOM MMC HARDMETAL U.K. LTD

Mitsubishi House, Galena Close, Amington Heights, Tamworth, B77 4AS, U.K. TEL +44-1827-312312 FAX +44-1827-312314

FRANCE MMC METAL FRANCE S.A.R.L. 6, rue Jacques Monod, 91400, Orsay, FRANCE TEL +33-1-69-35-53-53 FAX +33-1-69-35-53-50

www.mitsubishicarbide.com

ESPANA

MITSUBISHI MATERIALS ESPAÑA, S.A. Calle Emperador 2, 46136, Museros, Valencia, SPAIN TEL +34-96-144-1711 FAX +34-96-144-3786

ITALY

MMC ITALIA S.R.L V.le delle Industrie 2, 20020 Arese (Mi), ITALY TEL +39-02-93-77-03-1 FAX +39-02-93-58-90-93

RUSSIA

MMC HARDMETAL OOO LTD.

ul. Bolschaya Semenovskaya 11, bld. 5, 107023 Moscow, RUSSIA TEL +7-495-72558-85 FAX +7-495-98139-73

POLAND

MMC HARDMETAL POLAND Sp. z o.o. Al. Armii Krajowej 61, 40-541 Wroclaw, POLAND TEL +48-71-335-16-20 FAX +48-71-335-16-21